Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cachexia Sarcopenia Muscle ; 13(3): 1864-1882, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35373498

RESUMO

BACKGROUND: Sarcopenia is characterized by the loss of skeletal muscle mass and strength and is associated with poor prognosis in patients with chronic obstructive pulmonary disease (COPD). Cigarette smoke (CS) exposure, a major cause for COPD, induces mitochondrial damage, which has been implicated in sarcopenia pathogenesis. The current study sought to examine the involvement of insufficient Parkin-mediated mitophagy, a mitochondrion-selective autophagy, in the mechanisms by which dysfunctional mitochondria accumulate with excessive reactive oxygen species (ROS) production in the development of COPD-related sarcopenia. METHODS: The involvement of Parkin-mediated mitophagy was examined using in vitro models of myotube formation, in vivo CS-exposure model using Parkin-/- mice, and human muscle samples from patients with COPD-related sarcopenia. RESULTS: Cigarette smoke extract (CSE) induced myotube atrophy with concomitant 30% reduction in Parkin expression levels (P < 0.05). Parkin-mediated mitophagy regulated myotube atrophy by modulating mitochondrial damage and mitochondrial ROS production. Increased mitochondrial ROS was responsible for myotube atrophy by activating Muscle Ring Finger 1 (MuRF-1)-mediated myosin heavy chain (MHC) degradation. Parkin-/- mice with prolonged CS exposure showed enhanced limb muscle atrophy with a 31.7% reduction in limb muscle weights (P < 0.01) and 2.3 times greater MuRF-1 expression (P < 0.01) compared with wild-type mice with concomitant accumulation of damaged mitochondria and oxidative modifications in 4HNE expression. Patients with COPD-related sarcopenia exhibited significantly reduced Parkin but increased MuRF-1 protein levels (35% lower and 2.5 times greater protein levels compared with control patients, P < 0.01 and P < 0.05, respectively) and damaged mitochondria accumulation demonstrated in muscles. Electric pulse stimulation-induced muscle contraction prevented CSE-induced MHC reduction by maintaining Parkin levels in myotubes. CONCLUSIONS: Taken together, COPD-related sarcopenia can be attributed to insufficient Parkin-mediated mitophagy and increased mitochondrial ROS causing enhanced muscle atrophy through MuRF-1 activation, which may be at least partly preventable through optimal physical exercise.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Sarcopenia , Ubiquitina-Proteína Ligases , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mitofagia/fisiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Espécies Reativas de Oxigênio/metabolismo , Sarcopenia/metabolismo , Sarcopenia/patologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...